3.16.31 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^2}{(d+e x)^4} \, dx\)

Optimal. Leaf size=63 \[ -\frac {\left (c d^2-a e^2\right )^2}{e^3 (d+e x)}-\frac {2 c d \left (c d^2-a e^2\right ) \log (d+e x)}{e^3}+\frac {c^2 d^2 x}{e^2} \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {626, 43} \begin {gather*} -\frac {\left (c d^2-a e^2\right )^2}{e^3 (d+e x)}-\frac {2 c d \left (c d^2-a e^2\right ) \log (d+e x)}{e^3}+\frac {c^2 d^2 x}{e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^2/(d + e*x)^4,x]

[Out]

(c^2*d^2*x)/e^2 - (c*d^2 - a*e^2)^2/(e^3*(d + e*x)) - (2*c*d*(c*d^2 - a*e^2)*Log[d + e*x])/e^3

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 626

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c*x)/e)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
 IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^2}{(d+e x)^4} \, dx &=\int \frac {(a e+c d x)^2}{(d+e x)^2} \, dx\\ &=\int \left (\frac {c^2 d^2}{e^2}+\frac {\left (-c d^2+a e^2\right )^2}{e^2 (d+e x)^2}-\frac {2 c d \left (c d^2-a e^2\right )}{e^2 (d+e x)}\right ) \, dx\\ &=\frac {c^2 d^2 x}{e^2}-\frac {\left (c d^2-a e^2\right )^2}{e^3 (d+e x)}-\frac {2 c d \left (c d^2-a e^2\right ) \log (d+e x)}{e^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 59, normalized size = 0.94 \begin {gather*} \frac {-\frac {\left (c d^2-a e^2\right )^2}{d+e x}+2 c d \left (a e^2-c d^2\right ) \log (d+e x)+c^2 d^2 e x}{e^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^2/(d + e*x)^4,x]

[Out]

(c^2*d^2*e*x - (c*d^2 - a*e^2)^2/(d + e*x) + 2*c*d*(-(c*d^2) + a*e^2)*Log[d + e*x])/e^3

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^2}{(d+e x)^4} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^2/(d + e*x)^4,x]

[Out]

IntegrateAlgebraic[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^2/(d + e*x)^4, x]

________________________________________________________________________________________

fricas [A]  time = 0.40, size = 108, normalized size = 1.71 \begin {gather*} \frac {c^{2} d^{2} e^{2} x^{2} + c^{2} d^{3} e x - c^{2} d^{4} + 2 \, a c d^{2} e^{2} - a^{2} e^{4} - 2 \, {\left (c^{2} d^{4} - a c d^{2} e^{2} + {\left (c^{2} d^{3} e - a c d e^{3}\right )} x\right )} \log \left (e x + d\right )}{e^{4} x + d e^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^2/(e*x+d)^4,x, algorithm="fricas")

[Out]

(c^2*d^2*e^2*x^2 + c^2*d^3*e*x - c^2*d^4 + 2*a*c*d^2*e^2 - a^2*e^4 - 2*(c^2*d^4 - a*c*d^2*e^2 + (c^2*d^3*e - a
*c*d*e^3)*x)*log(e*x + d))/(e^4*x + d*e^3)

________________________________________________________________________________________

giac [B]  time = 0.18, size = 134, normalized size = 2.13 \begin {gather*} c^{2} d^{2} x e^{\left (-2\right )} - 2 \, {\left (c^{2} d^{3} - a c d e^{2}\right )} e^{\left (-3\right )} \log \left ({\left | x e + d \right |}\right ) - \frac {{\left (c^{2} d^{6} - 2 \, a c d^{4} e^{2} + a^{2} d^{2} e^{4} + {\left (c^{2} d^{4} e^{2} - 2 \, a c d^{2} e^{4} + a^{2} e^{6}\right )} x^{2} + 2 \, {\left (c^{2} d^{5} e - 2 \, a c d^{3} e^{3} + a^{2} d e^{5}\right )} x\right )} e^{\left (-3\right )}}{{\left (x e + d\right )}^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^2/(e*x+d)^4,x, algorithm="giac")

[Out]

c^2*d^2*x*e^(-2) - 2*(c^2*d^3 - a*c*d*e^2)*e^(-3)*log(abs(x*e + d)) - (c^2*d^6 - 2*a*c*d^4*e^2 + a^2*d^2*e^4 +
 (c^2*d^4*e^2 - 2*a*c*d^2*e^4 + a^2*e^6)*x^2 + 2*(c^2*d^5*e - 2*a*c*d^3*e^3 + a^2*d*e^5)*x)*e^(-3)/(x*e + d)^3

________________________________________________________________________________________

maple [A]  time = 0.05, size = 92, normalized size = 1.46 \begin {gather*} -\frac {a^{2} e}{e x +d}+\frac {2 a c \,d^{2}}{\left (e x +d \right ) e}+\frac {2 a c d \ln \left (e x +d \right )}{e}-\frac {c^{2} d^{4}}{\left (e x +d \right ) e^{3}}-\frac {2 c^{2} d^{3} \ln \left (e x +d \right )}{e^{3}}+\frac {c^{2} d^{2} x}{e^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^2/(e*x+d)^4,x)

[Out]

c^2*d^2*x/e^2-e/(e*x+d)*a^2+2/e/(e*x+d)*a*c*d^2-1/e^3/(e*x+d)*c^2*d^4+2*d*c/e*ln(e*x+d)*a-2*d^3*c^2/e^3*ln(e*x
+d)

________________________________________________________________________________________

maxima [A]  time = 1.16, size = 79, normalized size = 1.25 \begin {gather*} \frac {c^{2} d^{2} x}{e^{2}} - \frac {c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}}{e^{4} x + d e^{3}} - \frac {2 \, {\left (c^{2} d^{3} - a c d e^{2}\right )} \log \left (e x + d\right )}{e^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^2/(e*x+d)^4,x, algorithm="maxima")

[Out]

c^2*d^2*x/e^2 - (c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(e^4*x + d*e^3) - 2*(c^2*d^3 - a*c*d*e^2)*log(e*x + d)/e^3

________________________________________________________________________________________

mupad [B]  time = 0.61, size = 83, normalized size = 1.32 \begin {gather*} \frac {c^2\,d^2\,x}{e^2}-\frac {a^2\,e^4-2\,a\,c\,d^2\,e^2+c^2\,d^4}{e\,\left (x\,e^3+d\,e^2\right )}-\frac {\ln \left (d+e\,x\right )\,\left (2\,c^2\,d^3-2\,a\,c\,d\,e^2\right )}{e^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^2/(d + e*x)^4,x)

[Out]

(c^2*d^2*x)/e^2 - (a^2*e^4 + c^2*d^4 - 2*a*c*d^2*e^2)/(e*(d*e^2 + e^3*x)) - (log(d + e*x)*(2*c^2*d^3 - 2*a*c*d
*e^2))/e^3

________________________________________________________________________________________

sympy [A]  time = 0.42, size = 71, normalized size = 1.13 \begin {gather*} \frac {c^{2} d^{2} x}{e^{2}} + \frac {2 c d \left (a e^{2} - c d^{2}\right ) \log {\left (d + e x \right )}}{e^{3}} + \frac {- a^{2} e^{4} + 2 a c d^{2} e^{2} - c^{2} d^{4}}{d e^{3} + e^{4} x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**2/(e*x+d)**4,x)

[Out]

c**2*d**2*x/e**2 + 2*c*d*(a*e**2 - c*d**2)*log(d + e*x)/e**3 + (-a**2*e**4 + 2*a*c*d**2*e**2 - c**2*d**4)/(d*e
**3 + e**4*x)

________________________________________________________________________________________